Monday 11 September 2017

Moving Average Lambda


Die eksponensieel Geweegde bewegende gemiddelde (EWMA) is 'n statistiek vir die monitering van die proses wat gemiddeldes die data op 'n manier dat al hoe minder gewig gee om data as hulle verder in die tyd verwyder. Vergelyking van Shewhart beheer grafiek en EWMA beheer grafiek tegnieke Vir die Shewhart grafiek beheer tegniek, die besluit oor die toestand van die beheer van die proses te eniger tyd, (t), hang uitsluitlik op die mees onlangse meting van die proses en, natuurlik, die mate van waaragtigheid van die skattings van die beheer perke van historiese data. Vir die EWMA beheer tegniek, die besluit hang af van die EWMA statistiek, wat is 'n eksponensieel geweegde gemiddeld van alle vorige data, insluitend die mees onlangse meting. Deur die keuse van gewig faktor, (lambda), kan die EWMA beheer proses sensitief vir 'n klein of geleidelike drif in die proses gemaak word, terwyl die Shewhart beheer proses net kan reageer wanneer die laaste data punt is buite 'n beheer limiet. Definisie van EWMA Die statistiek wat bereken is: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1, 2,, ldots ,, n. waar (mbox 0) is die gemiddeld van historiese data (teiken) (Yt) is die waarneming by die tyd (t) (N) is die aantal waarnemings word gemonitor insluitend (mbox 0) (0 Interpretasie van EWMA beheer grafiek Die rooi kolle is die rou data van die kronkelende lyn is die EWMA statistiek met verloop van tyd. die grafiek vertel ons dat die proses is in beheer, want almal (mbox t) lê tussen die beheer perke. Maar dit lyk asof daar 'n tendens opwaarts wees vir die laaste 5 periods. Exploring die eksponensieel Geweegde Moving Gemiddelde volatiliteit is die mees algemene maatstaf van risiko, maar dit kom in verskeie geure. in 'n vorige artikel het ons gewys hoe om eenvoudige historiese wisselvalligheid te bereken. (om hierdie artikel te lees, sien die gebruik van volatiliteit toekomstige Gauge risiko.) ons gebruik Googles werklike aandele prys data om daaglikse wisselvalligheid bereken op grond van 30 dae vanaf voorraad data. in hierdie artikel, sal ons verbeter op eenvoudige wisselvalligheid en bespreek die eksponensieel geweeg bewegende gemiddelde (EWMA). Historiese Vs. geïmpliseerde volatiliteit in die eerste plek kan sit hierdie metrieke in 'n bietjie van perspektief. Daar is twee breë benaderings: historiese en geïmpliseer (of implisiete) wisselvalligheid. Die historiese benadering veronderstel dat verlede is proloog ons geskiedenis te meet in die hoop dat dit voorspellende. Geïmpliseerde wisselvalligheid, aan die ander kant, ignoreer die geskiedenis wat dit oplos vir die wisselvalligheid geïmpliseer deur markpryse. Hulle hoop dat die mark weet die beste en dat die markprys bevat, selfs al is implisiet, 'n konsensus skatting van wisselvalligheid. (Vir verwante leesstof, sien die gebruike en beperkinge van Volatiliteit.) As ons fokus op net die drie historiese benaderings (op die bogenoemde links), hulle het twee stappe in gemeen: Bereken die reeks periodieke opgawes Pas 'n gewig skema Eerstens, ons bereken die periodieke terugkeer. Dis gewoonlik 'n reeks van die daaglikse opgawes waar elke terugkeer uitgedruk in voortdurend saamgestel terme. Vir elke dag, neem ons die natuurlike log van die verhouding van aandele pryse (dit wil sê die prys vandag gedeel deur die prys gister, en so aan). Dit veroorsaak 'n reeks van die daaglikse opbrengs van u ek u i-m. afhangende van hoeveel dae (m dae) ons meet. Dit kry ons by die tweede stap: Dit is hier waar die drie benaderings verskil. In die vorige artikel (Die gebruik van Volatiliteit Om toekomstige risiko Gauge), ons het getoon dat onder 'n paar aanvaarbare vereenvoudigings, die eenvoudige afwyking is die gemiddeld van die kwadraat opbrengste: Let daarop dat hierdie som elk van die periodieke opgawes, verdeel dan wat totaal deur die aantal dae of waarnemings (m). So, dit is regtig net 'n gemiddeld van die kwadraat periodieke opgawes. Anders gestel, is elke vierkant terugkeer gegee 'n gelyke gewig. So as alfa (a) is 'n gewig faktor (spesifiek, 'n 1 / m), dan 'n eenvoudige variansie lyk iets soos hierdie: Die EWMA Verbeter op Eenvoudige Variansie Die swakheid van hierdie benadering is dat alle opgawes verdien dieselfde gewig. Yesterdays (baie onlangse) terugkeer het geen invloed meer op die variansie as verlede maande terugkeer. Hierdie probleem is opgelos deur die gebruik van die eksponensieel geweeg bewegende gemiddelde (EWMA), waarin meer onlangse opbrengste het 'n groter gewig op die variansie. Die eksponensieel geweeg bewegende gemiddelde (EWMA) stel lambda. wat die smoothing parameter genoem. Lambda moet minstens een wees. Onder daardie toestand, in plaas van gelyke gewigte, elke vierkant terugkeer is geweeg deur 'n vermenigvuldiger soos volg: Byvoorbeeld, RiskMetrics TM, 'n finansiële risikobestuur maatskappy, is geneig om 'n lambda van 0,94, of 94. gebruik in hierdie geval, die eerste ( mees onlangse) kwadraat periodieke terugkeer is geweeg deur (1-0,94) (. 94) 0 6. die volgende kwadraat terugkeer is bloot 'n lambda-veelvoud van die vorige gewig in hierdie geval 6 vermenigvuldig met 94 5.64. En die derde voor dae gewig gelyk (1-0,94) (0.94) 2 5,30. Dis die betekenis van eksponensiële in EWMA: elke gewig is 'n konstante vermenigvuldiger (dit wil sê lambda, wat moet wees minder as een) van die dae gewig voor. Dit sorg vir 'n afwyking wat geweeg of voorkeur vir meer onlangse data. (Vir meer inligting, kyk na die Excel Werkkaart vir Googles Volatiliteit.) Die verskil tussen net wisselvalligheid en EWMA vir Google word hieronder getoon. Eenvoudige wisselvalligheid effektief weeg elke periodieke terugkeer deur 0,196 soos uiteengesit in kolom O (ons het twee jaar van die daaglikse aandeleprys data. Dit is 509 daaglikse opgawes en 1/509 0,196). Maar let op dat Kolom P ken 'n gewig van 6, dan 5.64, dan 5.3 en so aan. Dis die enigste verskil tussen eenvoudige variansie en EWMA. Onthou: Nadat ons die hele reeks (in kolom Q) het ons die variansie, wat is die kwadraat van die standaardafwyking som. As ons wil hê wisselvalligheid, moet ons onthou om die vierkantswortel van daardie afwyking te neem. Wat is die verskil in die daaglikse wisselvalligheid tussen die variansie en EWMA in Googles geval beduidende: Die eenvoudige variansie het ons 'n daaglikse wisselvalligheid van 2,4, maar die EWMA het 'n daaglikse wisselvalligheid van slegs 1.4 (sien die sigblad vir besonderhede). Blykbaar, Googles wisselvalligheid bedaar meer onlangs dus kan 'n eenvoudige variansie kunsmatig hoog wees. Vandag se afwyking is 'n funksie van Pior Dae Variansie Youll kennisgewing wat ons nodig het om 'n lang reeks van eksponensieel afneem gewigte bereken. Ons sal nie die wiskunde doen hier, maar een van die beste eienskappe van die EWMA is dat die hele reeks gerieflik verminder tot 'n rekursiewe formule: Rekursiewe beteken dat vandag se stryd verwysings (dit wil sê 'n funksie van die vorige dae variansie). Jy kan hierdie formule in die sigblad ook, en dit lei tot die presies dieselfde resultaat as die skuldbewys berekening Dit sê: Vandag se variansie (onder EWMA) gelyk yesterdays variansie (geweeg volgens lambda) plus yesterdays kwadraat terugkeer (geweeg deur een minus lambda). Let op hoe ons net bymekaar te tel twee terme: yesterdays geweegde variansie en yesterdays geweeg, vierkantig terugkeer. Net so is, lambda is ons glad parameter. 'N Hoër lambda (bv soos RiskMetrics 94) dui stadiger verval in die reeks - in relatiewe terme, gaan ons meer datapunte in die reeks en hulle gaan stadiger af te val. Aan die ander kant, as ons die lambda verminder, dui ons hoër verval: die gewigte val vinniger af en, as 'n direkte gevolg van die snelle verval, is minder datapunte gebruik. (In die sigblad, lambda is 'n inset, sodat jy kan eksperimenteer met sy sensitiwiteit). Opsomming Volatiliteit is die oombliklike standaardafwyking van 'n voorraad en die mees algemene risiko metrieke. Dit is ook die vierkantswortel van variansie. Ons kan variansie histories of implisiet (geïmpliseer wisselvalligheid) te meet. Wanneer histories meet, die maklikste metode is eenvoudig variansie. Maar die swakheid met 'n eenvoudige afwyking is alle opgawes kry dieselfde gewig. So staan ​​ons voor 'n klassieke kompromis: ons wil altyd meer inligting, maar hoe meer data het ons die meer ons berekening verwater deur verre (minder relevant) data. Die eksponensieel geweeg bewegende gemiddelde (EWMA) verbeter op eenvoudige variansie deur die toeken van gewigte aan die periodieke opgawes. Deur dit te doen, kan ons albei gebruik 'n groot monster grootte, maar ook 'n groter gewig te gee aan meer onlangse opbrengste. (Om 'n fliek handleiding te sien oor hierdie onderwerp, besoek die Bionic skilpad.) Klein veranderinge net duidelik geword met verloop van tyd Omdat dit neem tyd vir die patrone in die data te voorskyn kom, kan 'n permanente verskuiwing in die proses nie onmiddellik veroorsaak individuele oortredings van die beheer beperkings op 'n Shewhart beheer grafiek. Die Shewhart beheer grafiek is nie kragtig vir die opsporing van klein veranderinge, sê van die orde van 1 - 1/2 standaardafwykings. Die EWMA (eksponensieel geweeg bewegende gemiddelde) beheer grafiek is beter geskik vir hierdie doel. Die eksponensieel geweeg bewegende gemiddelde (EWMA) is 'n statistiek vir die monitering van die proses wat gemiddeldes die data op 'n manier dat al hoe minder gewig gee om data as hulle verder in die tyd van die huidige meting verwyder. Die data Y1, Y2,. , Yt is die tjek standaard metings bestel betyds. Die EWMA statistiek op tydstip t is rekursief bereken vanaf individuele datapunte, met die eerste EWMA statistiek, EWMA 1. synde die rekenkundige gemiddeld van historiese data. EWMA lambda Yt (1-lambda) EWMA beheer meganisme vir EWMA Die EWMA beheer grafiek kan sensitief vir klein veranderinge of 'n geleidelike drif in die proses deur die keuse van die gewig faktor, (lambda) gemaak word. A gewig faktor van 0,2-0,3 word gewoonlik voorgestel vir hierdie doel (Hunter). en 0.15 is ook 'n gewilde keuse. Perke vir die kontrolekaart Die teiken of middellyn vir die beheer grafiek is die gemiddeld van historiese data. Die boonste (UCL) en laer (LCL) perke is UCL EWMA k sqrt LCL EWMA - k sqrt waar s keer die radikale uitdrukking is 'n goeie benadering tot die standaardafwyking van die EWMA statistiek en die faktor k gekies op dieselfde manier as vir die Shewhart beheer grafiek - oor die algemeen tot 2 of 3. prosedure vir die implementering van die EWMA beheer grafiek die implementering van die EWMA beheer grafiek is dieselfde as vir enige ander tipe beheer proses. Die prosedure is gebou op die aanname dat die goeie historiese data is verteenwoordigend van die in-beheer proses, met toekomstige data van dieselfde proses getoets vir ooreenkoms met die historiese data. Om die proses te begin, 'n teiken (gemiddeld) en proses standaardafwyking word bereken uit historiese tjek standaard data. Dan gaan die proses die monitering stadium met die EWMA statistieke bereken en getoets teen die beheer perke. Die EWMA statistieke is geweegde gemiddeldes, en dus hul standaardafwykings is kleiner as die standaardafwykings van die rou data en die ooreenstemmende beheer perke is smaller as die beheer perke vir die Shewhart individuele waarnemings chart. EWMA 101 Die EWMA benadering het 'n aantreklike kenmerk: dit vereis relatief min data wat gestoor word. Om ons skatting op enige punt op te dateer, ons moet net 'n vorige skatting van die variansie koers en die mees onlangse waarneming waarde. 'N Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor. Vir klein waardes, Onlangse waarnemings beïnvloed die skatting stiptelik. Vir waardes nader aan een, die skatting veranderinge stadig gebaseer op onlangse veranderings in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan en openbaar gemaak beskikbaar) gebruik die EWMA met vir die opdatering daagliks wisselvalligheid. BELANGRIK: Die EWMA formule nie aanvaar 'n lang loop gemiddelde variansie vlak. So, die konsep van wisselvalligheid beteken terugkeer is nie vasgevang word deur die EWMA. Die ARCH / GARCH modelle is beter geskik vir hierdie doel. Lambda 'n Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor, sodat vir klein waardes, onlangse waarneming beïnvloed die skatting stiptelik, en vir waardes nader aan een, die skatting veranderinge stadig onlangse veranderinge in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan) en openbare beskikbaar gestel in 1994, gebruik die EWMA model met vir die opdatering daagliks wisselvalligheid skatting. Die maatskappy het bevind dat oor 'n reeks van die mark veranderlikes, hierdie waarde van gee voorspelling van die variansie wat die naaste aan besef variansie koers kom. Die besef variansie tariewe op 'n bepaalde dag is bereken as 'n ewe-gemiddelde van die daaropvolgende 25 dae. Net so, om die optimale waarde van lambda bereken vir ons datastel, moet ons die besef wisselvalligheid by elke punt te bereken. Daar is verskeie metodes, so kies een. Volgende, bereken die som van 'n vierkant foute (SSE) tussen EWMA skatting en besef wisselvalligheid. Ten slotte, verminder die SSE deur wisselende die lambda waarde. Klink maklik dit is. Die grootste uitdaging is om in te stem op 'n algoritme om besef wisselvalligheid bereken. Byvoorbeeld, die mense by RiskMetrics verkies die daaropvolgende 25-dag te besef variansie koers bereken. In jou geval, kan jy 'n algoritme wat daaglikse volume gebruik, MI / LO en / of openbare-close pryse te kies. Vrae Q 1: Kan ons gebruik EWMA om te skat (of voorspel) wisselvalligheid meer as 'n stap vorentoe Die EWMA wisselvalligheid verteenwoordiging nie aanvaar 'n langtermyn gemiddelde wisselvalligheid, en dus, vir enige vooruitsig horison meer as een-stap, die EWMA gee 'n konstante waarde: Gemiddeldes / Eenvoudige bewegende gemiddelde Gemiddeldes / Eenvoudige bewegende gemiddelde u word aangemoedig om hierdie taak op te los volgens die taakbeskrywing, die gebruik van enige taal wat jy kan weet. Berekening van die eenvoudige bewegende gemiddelde van 'n reeks van getalle. Skep 'n Stateful funksie / klas / instansie wat 'n tydperk neem en gee 'n roetine dat 'n aantal neem as argument en gee 'n eenvoudige bewegende gemiddelde van sy argumente tot dusver. 'N Eenvoudige bewegende gemiddelde is 'n metode vir die berekening van 'n gemiddelde van 'n stroom van getalle met slegs gemiddeld die afgelope 160 P 160 nommers van die stroom, 160 waar 160 P 160 is bekend as die tydperk. Dit kan toegepas word deur die roeping van 'n parafering roetine met 160 P 160 as sy argument, 160 I (P), 160 wat dan 'n roetine dat wanneer geroep met individuele, opeenvolgende lede van 'n stroom van getalle, bere die gemiddelde van sou terugkeer (up om), die laaste 160 P 160 van hulle, kan noem dit 160 SMA (). Die woord 160 Stateful 160 in die taak beskrywing verwys na die behoefte aan 160 SMA () 160 om sekere inligting tussen oproepe onthou om dit: 160 Die tydperk, 160 P 160 N bestel houer van ten minste die laaste 160 P 160 nommers uit elk van sy individuele oproepe. Stateful 160 beteken ook dat opeenvolgende oproepe na 160 I (), 160 die initializer, 160 moet afsonderlike roetines wat doen 160 nie 160 aandele gered staat sodat hulle kan gebruik word op twee onafhanklike strome van data terugkeer. Pseudo-kode vir die implementering van 160 SMA 160 is: Hierdie weergawe maak gebruik van 'n aanhoudende tou om die mees onlangse p waardes hou. Elke funksie teruggekeer van init-bewegende-gemiddelde het sy toestand in 'n atoom met 'n tou waarde. Dit implementering gebruik 'n omsendbrief lys van die nommers in die venster op te slaan aan die begin van elke iterasie wyser verwys na die lys sel wat hou die waarde net beweeg by die venster uit en vervang moet word met die net toegevoegde waarde. Met behulp van 'n afsluiting wysig Tans hierdie SMA cant nogc wees omdat dit 'n sluiting op die wal ken. Sommige ontsnapping analise kan die hoop toekenning te verwyder. Met behulp van 'n struct wysig Hierdie weergawe vermy die hoop toekenning van die sluiting behoud van die data in die stapel raamwerk van die hooffunksie. Dieselfde uitset: Om te verhoed dat die drywende punt benaderings hou opstapel en groei, kan die kode 'n periodieke som uit te voer op die hele ronde tou skikking. Dit implementering produseer twee (funksie) voorwerpe deel staat. Dit is idiomatiese in E te skei insette van uitset (lees en skryf) eerder as om dit kombineer in een voorwerp. Die struktuur is dieselfde as die implementering van Standard DeviationE. Die onderstaande elikser program genereer 'n anonieme funksie met 'n ingeboude tydperk p, wat gebruik word as die tydperk van die eenvoudige bewegende gemiddelde. Die aanloop funksie lees numeriese insette en gee dit aan die nuutgeskepte anonieme funksie, en dan inspekteer die resultaat te STDOUT. Die uitset word hieronder getoon, met die gemiddelde, gevolg deur die gegroepeer insette, wat die basis vorm van elke bewegende gemiddelde. Erlang het sluitings, maar onveranderlike veranderlikes. 'N Oplossing is dan om prosesse en 'n eenvoudige boodskap verby gebaseer API te gebruik. Matrix tale roetines om die sweef avarages vir 'n gegewe volgorde van items bereken. Dit is minder doeltreffend te loop as in die volgende opdragte. Voortdurend gevra vir 'n inset ek. wat by die einde van 'n lys T1. T1 kan gevind word deur te druk 2ND / 1, en gemiddelde kan gevind word in Lys / OPS druk op die program te beëindig. Funksie wat 'n lys met die gemiddeld data van die verskaf argument program wat 'n eenvoudige waarde terug by elke aanroeping terug: lys is die lys word gemiddeld: p is die tydperk: 5 opbrengste die gemiddeld lys: Voorbeeld 2: Die gebruik van die program movinav2 (i , 5) - Inisialiseer bewegende gemiddelde berekening, en definieer tydperk van 5 movinav2 (3, x): x - nuwe data in die lys (waarde 3), en gevolg sal word gestoor op veranderlike x, en vertoon movinav2 (4 x) : x - nuwe data (waarde 4), en die nuwe gevolg sal gestoor word op veranderlike x, en vertoon (43) / 2. Beskrywing van die funksie movinavg: veranderlike r - is die gevolg (die gemiddeld lys) wat veranderlike sal teruggestuur word ek - is die indeks veranderlike, en dit dui op die einde van die sub-lys die lys word gemiddeld. veranderlike Z - 'n helper veranderlike Die funksie gebruik veranderlike i om vas te stel watter waardes van die lys sal in die volgende gemiddelde berekening in ag geneem word. By elke iterasie, veranderlike i dui op die laaste waarde in die lys wat gebruik sal word in die gemiddelde berekening. So ons moet net om uit te vind wat die eerste waarde in die lys sal wees. Gewoonlik goed moet p elemente oorweeg, sodat die eerste element sal die een geïndekseer deur (i-P1) te wees. Maar op die eerste iterasies wat berekening gewoonlik negatief sal wees, sodat die volgende vergelyking negatiewe indekse sal vermy: Max (i-p1,1) of, reël die vergelyking, Max (i-p, 0) 1. of, die reël van die vergelyking, (i - (Max (IP, 0) 1) 1), en dan - maar die aantal elemente op die eerste iterasies sal ook kleiner wees, sal die korrekte waarde (begin indeks 1 einde indeks) wees , (i-Max (IP, 0)). Veranderlike Z hou die algemene waarde (maksimum (IP), 0) sodat die beginindex sal wees (Z1) en die numberofelements sal wees (iz) die middel (lys, Z1, iz) sal die lys van waarde wat sal gemiddeld som terugkeer ( .) sal hulle som som (.) / (iz) ri sal hulle gemiddeld en stoor die resultaat in die toepaslike plek in die lys gevolg behulp van 'n sluiting en die skep van 'n funksie

No comments:

Post a Comment